0.1 Using the Limit Definition of a Derivative**

- 1. The function f gives the voltage (in Volts) across a capacitor as a function of time t (in seconds) since the capacitor started being charged. Write the meaning for each of the following expressions in the context of this situation.
 - (a) f(5) f(2)
 - (b) $\frac{f(t+4) f(t)}{4}$
 - (c) $\lim_{\Delta t \to 0} \frac{f(t + \Delta t) f(t)}{\Delta t}$
- 2. Consider the function defined by $f(x) = x^2 1$. What is the value of $\lim_{h \to 0} \frac{f(3+h) f(3)}{(3+h) 3}$?
 - (a) 0
 - **(b)** 6
 - (c) 8
 - (d) 2x
 - (e) The limit does not exist.
- 3. The expression $\lim_{h\to 0} \frac{(x+h)^3 \ln(x+h) (x^3 \ln(x))}{h}$ is the derivative of what function?

(a)
$$f(x) = (x+h)^3 - \ln(x+h)$$

(b)
$$f(x) = 3x^2 - \frac{1}{x}$$

(c)
$$f(x) = 3x^2 - \frac{1}{x}$$

$$(d) f(x) = x^3 - \ln(x)$$

(e)
$$f(x) = \frac{(x+h)^3 - \ln(x+h) - (x^3 - \ln(x))}{h}$$

- 4. Evaluate $\lim_{h\to 0} \frac{5(-1+h)^9-5(-1)^9}{h}$.
 - (a) 45
 - (b) -45
 - (c) 5
 - (d) -5
 - (e) Limit does not exist

5. If f is a differentiable function and a is a number, then f'(a) is given by which of the following expressions:

I.
$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

II.
$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

III.
$$\lim_{h\to 0} \frac{f(x+h) - f(x)}{x-h}$$

- a. I only
- b. II only
- c. I and II only
- d. I and III only
- e. I, II, and III
- 6. The following expression represents the derivative of what function?

$$\lim_{\Delta x \to 0} \frac{3\cos^2(x + \Delta x) - 3\cos^2(x)}{\Delta x}$$

a.
$$f(x) = 3\cos^2(x + \Delta x)$$

b.
$$f(x) = 3\cos^2(x)$$

c.
$$f(x) = 3\cos^2(x + \Delta x) - 3\cos^2(x)$$

$$d. f(x) = 6\cos(x)\sin(x)$$

e.
$$f(x) = \frac{3\cos^2(x + \Delta x) - 3\cos^2(x)}{\Delta x}$$

7.
$$\lim_{h \to 0} \frac{(2+h)^4 - 2^4}{h} =$$

- a. 0
- b. 16
- c. 1
- d. 32
- e. The limit does not exist